A Multi-objective Genetic Algorithm for Reliability Optimization Problem

نویسندگان

  • AMAR KISHOR
  • SHIV PRASAD YADAV
  • Amar Kishor
  • Shiv Prasad Yadav
چکیده

This paper considers the allocation of maximum reliability to a complex system, while minimizing the cost of the system, a type of multi-objective optimization problem (MOOP). Multi-objective Evolutionary Algorithms (MOEAs) have been shown in the last few years as powerful techniques to solve MOOP .This paper successfully applies a Nondominated sorting genetic algorithm (NSGA-II) technique to obtain the Pareto optimal solution of a complex system reliability optimization problem under fuzzy environment in which the statements might be vague or imprecise. Decisionmaker (DM) could choose, in a “posteriori” decision environment, the most convenient optimal solution according to his/her level of satisfaction. The efficiency of NSGA-II in solving this problem is demonstrated by comparing its results with those of simulated annealing (SA) and nonequilibrium simulated annealing (NESA).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling and optimization of a tri-objective Transportation-Location-Routing Problem considering route reliability: using MOGWO, MOPSO, MOWCA and NSGA-II

 In this research, a tri-objective mathematical model is proposed for the Transportation-Location-Routing problem. The model considers a three-echelon supply chain and aims to minimize total costs, maximize the minimum reliability of the traveled routes and establish a well-balanced set of routes. In order to solve the proposed model, four metaheuristic algorithms, including Multi-Objective Gre...

متن کامل

Solving a Redundancy Allocation Problem by a Hybrid Multi-objective Imperialist Competitive Algorithm

A redundancy allocation problem (RAP) is a well-known NP-hard problem that involves the selection of elements and redundancy levels to maximize the system reliability under various system-level constraints. In many practical design situations, reliability apportionment is complicated because of the presence of several conflicting objectives that cannot be combined into a single-objective functi...

متن کامل

Multi-objective Grasshopper Optimization Algorithm based Reconfiguration of Distribution Networks

Network reconfiguration is a nonlinear optimization procedure which calculates a radial structure to optimize the power losses and improve the network reliability index while meeting practical constraints. In this paper, a multi-objective framework is proposed for optimal network reconfiguration with the objective functions of minimization of power losses and improvement of reliability index. T...

متن کامل

A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm

This paper  presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...

متن کامل

Solving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm

This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...

متن کامل

An optimization technique for vendor selection with quantity discounts using Genetic Algorithm

Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009